
John Mellor-Crummey, Laksono Adhianto
William Scherer III

Department of Computer Science
Rice University

johnmc@cs.rice.edu

A New Vision for Coarray Fortran

Los Alamos Computer Science Symposium 14 October 2009

2

Lessons from HPF

• Good parallelizations require proper partitionings
—inferior partitionings will fall short at scale

• Excess communication undermines scalability
—both frequency and volume must be right!

• Must exploit what smart users know
—allow the power user to relax consistency

• Single processor efficiency is critical
—node code must be competitive with serial versions
—must use caches effectively on microprocessors

3

Coarray Fortran (CAF)

• Explicitly-parallel extension of Fortran 95 (Numrich & Reid)

• Global address space SPMD parallel programming model
—one-sided communication

• Simple, two-level memory model for locality management
—local vs. remote memory

• Programmer has control over performance critical decisions
—data partitioning
—computation partitioning
—communication
—synchronization

• Suitable for mapping to a range of parallel architectures
—shared memory, clusters, hybrid

4

Classic CAF Programming Model

• SPMD process images
—fixed number of images during execution: num_images()
—images operate asynchronously: this_image()

• Both private and shared data
– real x(20, 20) a private 20x20 array in each image
– real y(20, 20) [*] a shared 20x20 array in each image

• Simple one-sided shared-memory communication
– x(:,j:j+2) = y(:,p:p+2) [r] copy columns from p:p+2 into local columns

• Synchronization intrinsic functions
—sync_all – a barrier and a memory fence
—sync_mem – a memory fence

• Asymmetric dynamic allocation of shared data

• Weak memory consistency

Why a New Vision?

Fortran 2008 draft specification characteristics

• Coarrays must be allocated over all images
—no support for process subsets

• Coarrays must be declared as global variables
—no support for dynamic non-global coarrays

• No remote pointers

• No support for collective communication

• Synchronization is not expressive enough

• ... and so on ... (see our critique)
—www.j3-fortran.org/doc/meeting/183/08-126.pdf

5

6

Outline

• Coarray Fortran 2.0
—Process subsets: teams
—Topologies
—Copointers
—Synchronization
—Collective communication

• Summary and ongoing work

Coarray Fortran 2.0 Goals

• Facilitate construction of sophisticated parallel applications and
parallel libraries

• Support irregular and adaptive applications

• Hide communication latency

• Colocate computation with remote data

• Scale to petascale architectures

• Exploit multicore processors

• Enable development of portable high-performance programs

• Interoperate with legacy models such as MPI

7

Process Subsets: Teams

• Teams are first-class entities
—ordered sequences of process images
—namespace for indexing images by

rank r in team t
– r ∈ {0..team_size(t) - 1}

—domain for allocating coarrays
—substrate for collective

communication

• Teams need not be disjoint
—an image may be in multiple teams

8

0 1 2 3

2

Ocean Atmosphere

Surface

10

4

8

12

5

9

13

6

10

14

7

11

15

0

1

2

3

3

 team_split (existing_team, color, key, new_team,
 [new_color=result_color, err_msg=emsg_var])

• Images supplying the same color are assigned to the same team

• Each images’s rank in the new team is determined by key order

• result_color ≠ color gets handle for another team
—used to arrange inter-team communication
—alternative to MPI’s process groups

• emsg_var receives any error result message

• Predefined team: TEAM_WORLD

Creating New Teams

9

Accessing Coarrays on Teams

• Accessing a coarray relative to a team
—x(i,j)[p@ocean] ! p names a rank in team ocean

• Accessing a coarray (default)
—x(i,j)[p] ! p names a rank in team_world (default)

• Simplifying processor indexing using “with team”
 with team atmosphere ! make atmosphere the default team
 ! p is wrt team atmosphere, q is wrt team ocean
 x(:,0)[p] = y(:)[q@ocean]
 end with team

10

Teams and Coarrays

11

real, allocatable :: x(:,:)[*] ! 2D array
real, allocatable :: z(:,:)[*]
team :: subset
integer :: color, rank

! each image allocates a singleton for z
allocate(z(200,200) [@team_world])

color = floor((2*team_rank(team_world)) /
 team_size(team_world))

! split into two subsets:
! top and bottom half of team_world
team_split(team_world, color, &
 team_rank(team_world), subset)

! members of the two subset teams
! independently allocate their own coarray x
allocate(x(100,n)[@ subset])

0 1 2 3 ... 114 5 6 7

z

subsetsubset

x x

0 1 2 3 4 5 0 1 2 3 4 5

team_world

team_rank(team):
returns the relative rank of the current image
within a team

team_size(team):
returns the number of images of a given team

Topology

• Motivation
—a vector of images may not adequately reflect their logical

communication structure
—multiple codimensions only support grid-like logical structures
—want a single mechanism for expressing more general structures

• Topology
—augments a team with a logical structure for communication
—more expressive than multiple codimensions

12

Using Topologies

• Creation
—Graph: topology_graph(n,e)
—Cartesian: topology_cartesian(/e1,e2,.../)

• Modification
—graph_neighbor_add(g,e,n,nv)
—graph_neighbor_delete(g,e,n,nv)

• Binding: topology_bind(team,topology)

• Accessing coarrays using a topology
—Cartesian

– array(:) [(i1, i2, ..., in)@ocean] ! absolute index wrt team ocean
– array(:) [+(i1, i2, ..., in)@ocean] ! relative index wrt self in team ocean
– array(:) [i1, i2, ..., ik] ! wrt enclosing default team

—Graph: access kth neighbor of image i in edge class e
– array(:) [(e,i,k)@g] ! wrt team g
– array(:) [e,i,k] ! wrt enclosing default team

13

0

4

Cartesian Topology Example

14

Topology :: Cart
Integer, Allocatable :: X(:)[*], Y(:)[*]
Team :: Ocean, SeaSurface

! create a cartesian topology 2 (cyclic) by 3
Cart = Topology_cartesian(/-2, 3/)

! bind Cart to teams Ocean and SeaSurface
Call Topology_bind(Ocean, Cart)
Call Topology_bind(SeaSurface, Cart)

 allocate(X(100)[@SeaSurface])
 allocate(Y(100)[@Ocean])

! Ocean is the default team in this scope
With Team Ocean
 Y(:) [1, 1] = X(:)[(-1, 2)@SeaSurface]
End With Team

1

5

32

Graph Topology Example

15

Topology :: graph
graph = topology_graph(6, 2)
integer :: red, blue, myrank

myrank = team_rank(team_world)

read *, blue_neighbors, red_neighbors
! blue edges
call graph_neighbor_add(graph, blue, myrank, blue_neighbors)

! red edges
call graph_neighbor_add(graph, red, myrank, red_neighbors)

! bind team with the topology
call topology_bind(ocean, graph)

allocate(x(100)@ocean)
y(:) = x(20:80) [(myrank, blue, 2)@ocean]

0 1

2

4 5

3

Copointers

16

• Motivation: support linked
data structures

• copointer attribute enables
association with remote
shared data

• imageof(x)returns the
image number for x

• useful to determine whether
copointer x is local

integer, allocatable :: a(:,:)[*]
integer, copointer :: x(:,:)[*]

allocate(a(1:20, 1:30)[@ team_world]

! associate copointer x with a
! remote section of a coarray
x => a(4:20, 2:25)[p]

! imageof intrinsic returns the target
! image for x
prank = imageof(x)

x(7,9) = 4 ! assumes target of x is local
x(7,9)[] = 4 ! target of x may be remote

Synchronization

• Lockset: ordered sets of locks
—convenient to avoid deadlock when locking/unlocking multiple

locks -- uses a canonical ordering

• Point-to-point synchronization via event variables
—like counting semaphores
—each variable provides a synchronization context
—a program can use as many events as it needs

– user program events are distinct from library events
—event_notify() / event_wait()

17

Collective Communication

• Collective operations:
—usual suspects: broadcast, all/gather, permute, all/reduce, scan,

scatter, segmented_scan, shift

• Flavors
—traditional: two-sided synchronous
—new modalities

– two-sided asynchronous: all start it and later finish it
– one-sided synchronous: one starts it and blocks until done
– one-sided asynchronous: one starts it and later finishes it

• A new twist: all/select for min, max, max_copy, min_copy

• User-defined reduction and selection operators

• Split-phase barriers

18

Summary and Ongoing Work

• CAF 2.0 supports many new features
—process subsets (teams), coarrays allocated on teams, dynamic

allocation of coarrays, collectives on teams
—topologies
—copointers
—events for safe pair-wise synchronization
—locksets

• Provides expressiveness, simplicity and orthogonality

• Source-to-source translator is a work in progress
—requires no vendor buy-in
—will deliver node performance of mature vendor compilers

• Coming attractions:
—cofunctions: remote procedure calls for latency avoidance
—coarray binding interface for inter-team communication

19

